The Limits of Computation


Chapter 5:  Turing-Completeness 

Other versions of Turing machines

The Turing machine is an extremely robust model of computation. This means that many, many changes can be made to our basic definition of a Turing machine without changing its power as a computing device. In other words, we can “tweak” a Turing machine this way or that and still be left with a Turing machine.

A model of computation is said to be Turing-complete if it can be shown that it is equivalent in power to a Turing machine.  In order to prove that one computational model M1 is equivalent to another computational model M2, we must show two things: 

1. M1 can perform all the same tasks as M2
2. M2 can perform all the same tasks as M1
Proving only one of these points does not show equivalency. A Cray supercomputer can accomplish any task that an abacus can, but this doesn’t mean that they are equivalent computing devices.

It’s important to realize that when talk about the equivalency of two computational models, we are not speaking about the efficiency of the models. The fact that machine M1 can accomplish the same tasks as M2 doesn’t mean that it does so by using an equivalent amount of resources.

Several different changes are proposed to the Turing machine model below. All of these modifications are shown to be Turing-complete.

Semi-infinite tape

Many authors use a model of a Turing machine that has a semi-infinite tape – the tape has a left end, but no right end.  The machine starts in qstart with the input placed on the leftmost portion of its tape and with the read/write head positioned above the first tape location.

The disadvantage of this model is that one must have some convention to deal with a transition function that asks for a move left when the read/write head is on the left end of the tape.  Various conventions will work – that the head falls off the left end of the tape and enters a hanging state from which it can never recover, that a move left when on the left end is implemented as remaining on the left end so that the head does not move, or other possibilities.

Having a left end to the tape also makes it awkward to return to the left end of the input.  Finding the right end is easy – simply move right to the first blank and then move to the left one position.  Finding the left end is similarly easy if the tape is two-way-infinite so that there is always a blank to the left of the input, but is much more difficult with a semi-infinite tape.

The two-way tape seems to allow simpler constructions and simpler combinations of moves.  However, it does not add additional power.

Theorem:  Any standard Turing machine M with two-way-infinite tape can be emulated by a Turing machine M ́ with semi-infinite tape.   Thus, the semi-infinite tape model of a Turing machine is Turing-complete.

Proof:  There are many ways to put a two-way infinite tape onto a semi-infinite tape.  One way is to make a machine M ́ by using square 1 as an end marker.  The even positions then hold the right side of the two-way-infinite tape; the other odd positions hold anything that would be written on the left.

We need a tape alphabet with a marker for the left end (for example, the turnstile character ⊢).  Initialize the tape of M ́ with ⊢w1Bw2Bw3B …Bwn,, where B denotes the blank character.  Now, the machine must have states for being on the right side of M, and another set of states that mean it should have been on the left side.  A move right on the right is done by moving right two, likewise a move left is a move left by two.  A move right when one is on the left side goes toward the center, or left.  If in any move right or left one sees the turnstile character ⊢, one has to switch states and adjust the move.  Thus, if the first move of M would be to move left one square, the new machine M ́ will move left one square, see the turnstile, change to the left states, and move right to the first blank.
Of course, a two-way infinite tape machine can emulate the behavior of any one-way infinite tape machine. It just never uses the available tape to the left of the input string.

Multiple tapes

It is often convenient to have multiple tapes.  By convention, a k-tape Turing machine starts with its input on the first tape, and the first head on the first character of the input.  The other tapes all begin as blank tapes.

A move of this Turing machine now takes a state, a k-tuple of characters under the k-heads.  It writes k new characters on each of the tapes, and moves each of the heads left or right.

To see how convenient this is, think of a simple example such as L = {strings over 0,1 such that the number of 0’s is equal to the number of 1’s}.  This can be done on one tape by moving back and forth, crossing out a zero and a one on each pass, and finding if all characters are crossed out on the same pass.  But with three tapes, one can move across the input once, copying each 0 to tape 2 and each 1 to tape 3.  Then one can pass back across these two tapes, checking that one hits the blank at the same time, so that the count of zeros must have equaled the count of ones.

Theorem:   Any k-tape Turing machine M has an equivalent one-tape Turing machine M ́.  Moreover, t steps of M can be emulated in Kt2 steps of M , where K is a constant́.  Thus, if an algorithm is bounded by t(n) steps on an input of size n on a k-tape machine, it is bounded by Kt2(n) steps on a one tape machine.

Proof:  As in emulating a two-way infinite tape one a semi-infinite tape, there are many choices for building M ́.

All the information from the k-tapes must be put onto one tape.  Each tape can have a finite string on it, and each tape has its own head position.

A standard trick for encoding head positions is to double the alphabet – for each symbol ( in Σ, add another symbol ( ́.  Thus, when tape i is put onto the single tape machine, the presence of the head on a square will be encoded as that symbol with its prime.  

We will also add the turnstile ⊢ to the alphabet to separate tapes.

Thus, in a three tape machine with Γ = {a,b,c, B}, we construct a one-tape machine with Σ = {⊢,a,b,c,a ́,b ́,c ́, B, B ́}.

If the three tapes contained:



abba



caa



_

That would be put onto one tape as



abb ́a⊢c ́aa⊢B ́

The head of this new machine would have to scan the entire tape, remembering (in its states) what each primed symbol should be replaced by, and where each head should go.  It would then rescan the tape, making the replacements and changing the symbols left or right to primed symbols.

One complication is that new space may have to be created within the string – for example, if the second head were to move left and the third head were to move right, the new string would become (if all heads write the same symbol they read):



ab ́ba⊢ B ́caa⊢BB ́

To create space within the string, some part of the string will have to be shifted right.

Now count what it takes to carry out one of these steps.  If the length of the input started as |I|, after t steps, the length of the nonblank portion of the first tape is at most t+|I| and of each of the other tapes is at most t.  There are (k-1) turnstile symbols.

Scanning the tape



|I| + kt + (k-1) < t +kt + (k-1) < (k+3)t   when t > |I| and t > k

Moving all or part of the tape to the right to free space within the string, if one moves to the far right and then alternates moving left, reading, moving right, copying until the desired portion of the tape is copied:



|I|+kt+k + 4(|I|+kt+k) < t+kt+t+4t+4kt+4t < (10+5k)t  when t > |I| and t>k

There are no more than k spaces or holes that have to be inserted, so this is the time spent inserting spaces and copying is bounded by




k(10+k)t

And the time to do one move is bounded by




[(k+3)+k(k+10)]t = Kt

Thus is takes Kt steps to carry out one step of the k-tape Turing machine, or Kt2 steps to carry out t steps.

A k-tape Turing machine can easily simulate the behavior of a one-tape Turing machine. It simply ignores it extra tapes.

Nondeterministic

Nondeterminism is a key concept in theoretical computer science.  In general, it means a choice of paths or moves – for a Turing machine, δ need no longer be a function.  Instead, δ(q,σ) could have 0, 1, 2, or more values for one state any symbol.  This would mean that the action of a machine on a string is not well determined, but could have a variety of outcomes.  In fact, some of the time it could reach the accepting state, some of the time end in the reject state, and other times loop forever – all of these outcomes could be possible on the same string.

The convention is that a nondeterministic Turing machine accepts a string w if some sequence of legal moves from ths start state on w reaches qaccept.  It wouldn’t matter if it only reached this state 1% of the time, and ended in qreject the other 99%.  It still accepts.  

In other words, for a nondeterministic machine, a string is accepted if there is any possible way to accept it.   You can think of this as, it is accepted if an omniscient omnipotent being were running the machine, telling it which move to pick.  Only if there is absolutely no sequence of moves leading to an accepting state will the machine then not accept.

A simple, but perhaps instructive, example would be a TM to accept strings that contain the substring “11”.  Of course, this is easy to do with a standard deterministic TM.  But a nondeterministic TM could just guess how many steps to move right, move right that many times, and then check that the current symbol and next symbol are both ‘1’.  What if they aren’t?  In a string of length 1000 with only one occurrence of “11”, the chances of landing on that spot are very small! And what if it moves right so far that it is off the string?  Well, it doesn’t matter!  As long as the string contains “11”, then there is some way of moving right to that spot and accepting, so it does.  

[The enterprising student might like some analogy of nondeterminism on homeworks or exams.  That is, if there is any right choice to make, then we just assume that choice is the one made.]

Definition 2.8: A Nondeterministic Turing Machine N = (Σ, Γ, Q, qaccept, qreject, qstart, δ) in which:

· Σ is the input alphabet with B ( Σ
· Γ is the tape alphabet with B ( Γ and Σ  ( Γ

· Q is a finite state set
· qaccept ( Q is the unique accept state
· qreject ( Q is the unique reject state
· qstart ( Q is the specially designated start state
· δ: Q – {qaccept, qreject} x Γ ( P(Q x Γ x {Left, Right}) is the transition relation
The only difference between this definition and that of its deterministic counterpart occurs in its δ component. Examine this carefully: it maps into the power set! Thus, the value of δ (q, σ) is a set of zero or more triples, and so δ is a relation and not a function. Thus, it is possible that from a certain position (in state q, reading σ) that there is no possible move, one possible move (as in an ordinary TM), or many possible moves.

Theorem:   Any nondeterministic Turing machine M has an equivalent deterministic Turing machine M ́.  Moreover, t steps of M can be emulated in 2Kt steps of M ́, where K is a constant.  Thus, if an algorithm on input of size n is bounded by t(n) on a nondeterministic machine, it is bounded by 2Kt(n) on a deterministic machine.

Note:  of course, a deterministic Turing machine is also a nondeterministic machine where the number of choices at each step is exactly one.  So the theorem says that a language has an ordinary TM iff it has a NDTM.

Proof:

The idea is simple: the deterministic Turing machine must simply try all possible sequences of moves that the non-deterministic machine could make, and accept if it ever finds an accepting sequence of moves.  The only complication is in how to systematically try all sequences of moves.  It can’t take any sequence and follow it until it reaches a resolution, since it might never do so.  And, it doesn’t have to be efficient, so it can restart at the very beginning each time.

Thus, it should try:


all sequences of moves of length 1 (all possible configurations that it can get to in one move)


all sequence of moves of length 2


all sequences of length 3

     
….

It just keeps doing this until it reaches an accepting state – which of course, may never happen.

The Turning machine will need some way to keep track of what sequences of moves it has tried and what to try next.  A multitape machine will be useful, and one of the tapes will be used to keep track of the sequences of moves that have been tried.

Note that the nondeterministic machines transition function may sometimes have no moves it can make (in which case we assume it goes to qreject), or one choice, or more than one choice.  But there are only a finite number of state, character combinations.  The maximum degree of nondeterminism for all (state,character) combinations will be called D.  Thus, there are at most D moves from any configuration.


D = maximum number of choices in the delta function 

Note that 


D ≤ 2 | Q | | Γ |

And that D = 1 exactly when the machine is deterministic. 

Consider the integers base (D+1) generated in lexicographical order:


1, 2, …, D, 11, 12, …..DD, 111, 112, …

Now a sequence such as 233D2 would mean


From the start, take the second possible move


Now, take the third possible move


And again, take the third


Now take the Dth possible move


Finally, take the second possible move



If this accepts, fine



else try the next sequence, which will be 233D3

One tape will hold the input and never change, to make it easy to start over with a new sequence of moves.

Another tape holds the sequence in base (D+1) as above.

A third tape is the working tape – each cycle begins by copying the input tape to the working tape. The sequence as read from tape 2 is carried out on this working tape.  If the machine does not enter qaccept, the tape is erased.

One does need some convention for the action to carry out if the move number called for does not exist.  For example, what should one do if one is supposed to make the 4th move from q127, a, and there is only one move available from that (state, character) combination? One can either skip that sequence (just erase it and move on to the next sequence), or one can use the convention that the highest move k is used for all moves k, k+1, … D.

How many steps does this take?  If the nondeterministic machine accepts after t steps, the deterministic machine will have tried all the paths of length 1, 2, 3, and so on up to (t-1) and some of the paths of length t.

There are D paths of length 1, D2 of length 2, …up to Dt paths of length t.


D + D2 + …+ Dt =  (Dt+1-D)/(D-1) = D(Dt-1)/(D-1) ( Dt = 2(log2 D) t= 2Kt
Important note:  These two theorems say that a polynomial algorithm on a k-tape Turing machine will remain polynomial on a one tape machine.  That means that if we want to prove that an algorithm has a polynomial order, but we do not care what the order of the polynomial is, we can use any number of tapes that we like.

On the other hand, we cannot use a nondeterministic polynomial algorithm to show that a problem has a polynomial algorithm.  In moving from nondeterministic to deterministic machines, an algorithm may become exponential.
Other extensions and limitations of Turing machines

There are many other extensions that can be applied to the basic Turing machine model which are Turing-complete:
· Add a stay option so head can move left, right, or stay

· Add multiple heads onto a tape

· Use a two-dimensional infinite tape

· Replace tape with two stacks of unlimited depth

The following changes, however, are not Turing-complete:

· Replace tape with one stack of unlimited depth (Pushdown Automaton, PDA)

· Allow only use of the input section of the tape (Linear Bounded Automaton, LBA)

· Allow only reading of the input I plus log|I| space for calculation (Logspace machine)

We will see below (Church-Turing Thesis) that no extension adds any power to the Turing machine, though it may add convenience.  Some limitations, such as LBAs – linear bounded automatons, in which the tape used is bounded by some linear multiple of the input tape, or is limited to only the squares occupied by the input – do restrict the power of the machine in “interesting” and useful ways.  The interested reader is directed to any of the standard books on the theory of automata. 
Turing Machines to Evaluate a Function 

In this course, Turing machines are used only to answer decision problems.  However, there are other kinds of Turing machines that can be developed.

If f is any function from strings to strings (and this is any computational problem that can be imagined), then a Turing machine M calculates (or computes) the function f if it starts with the input(s) x1, … xn to f on its tape, and ends (in some specially designated state qdone) with f(x1, … xn) on the tape.  A simple example would be a machine to add the numbers n and m, written in decimal.



Addition Turing Machine:




Start:   qstart, n#m




Finish:  qdone,n+m

Enumerating Turing Machines

A Turing machine enumerates a language L if it has a special state qfoundone.  An enumerating TM takes no input.  It starts with an empty tape, and works by listing the strings in L, one by one.  Each time it writes a string in L, it announces that it has found one by entering  q found_one .  Eventually, every string in L must be enumerated (although not in any particular order).



Enumerating Turing Machine for L={n|n is prime}




Start:  qstart, empty tape




Intermediate:  qfound_one, 13; qfound_one 2; qfound_one 7; qfound_one 23….





(in any order whatsover, with duplicates allowed)




Finish:  never ends
It would be easy to design a Turing machine to enumerate the language L = {w | w starts with ‘aa’} over (={a,b,c.  It would be less easy, but not difficult, to design one to enumerate L = {w | w is the representation of a prime number, in decimal}.    

The Church-Turing Thesis

There have been various models of what “computation” means.  Programs written in any one of the many programming languages are some of these models, but the idea of computation goes back to well before the existence of computers and computer languages.  The question goes back to Leibniz, and was one of the important open problems of the early 20th century ( David Hilbert made several references to it).  But it was only about 1930 that the problem was made sufficiently precise to be answered.  Two logicians/mathematicians who first answered this question were Alonzo Church and Alan Turing.

Alonzo Church was an American mathematician at Princeton.  He developed the model of computation called lambda calculus. Alan Turing was a British mathematician.  He is well known for his code breaking work during World War II at Bletchley Park.  But, he also wrote (1936) a paper "On Computable Numbers, with an Application to the Entscheidungsproblem".   The “Entscheidungsproblem” is the problem of finding an algorithm for deciding whether a proposition in first order predicate logic is always true.  

The work of Church and Turing showed that there is no algorithm to solve the Entscheidungsproblem.  Part of the work in doing this requires the formalization – what is an “algorithm”?  Church used lambda calculus, Turing used Turing machines (not his name for them) – more on this later.  It was fairly easily shown that these two characterizations of algorithms are equivalent.

Other theoretical ideas of computation have also been in use – recursive function theory,  Post systems, Markov systems, register machines.  (A “register machine” is the simplest possible computer; its only instructions are increment, decrement, test-and-branch, halt). Each of these models can be simulated by a Turing Machine.

The Church Turing Thesis states that every model of computation – even those not yet in existence – can be done by, and is equivalent to, a Turing Machine.

Note that there is no hope of “proving” this.  It isn’t possible to prove anything about a  model of computation that has not even been thought of yet.  However, the thesis has been verified for all known models of computation.  It’s widely accepted in the communities of logic, mathematics, and computer science.  But its unprovability is why it has the name “Thesis” instead of “Theorem”.

Thus, we’ll use “Turing Machine” as our model of computation.  Or, stated otherwise, 

computation = expressible on a Turing machine

and

algorithm = expressible on a Turing machine that halts

Whatever can be done in some programming language can be done on a Turing Machine.  And, if someone thinks of a new model of computation, the first question will be if it is Turing-Complete. One can also ask if a Turing Machine can do anything it can do – but of course we all expect that answer to be ‘yes’.

The Church-Turing Thesis states that Turing machines can carry out algorithms done by any model of computation whatsoever, certainly including standard computer operations. At first glance, Turing Machines certainly seem less powerful than the standard desk PC.  The simplicity of the Turing Machine is its best trait; it may be hard to write a complete Turing machine to do any interesting task, but theoretically, they are quite straightforward.

It is not a difficult programming exercise to write a Turing-machine emulator that will carry out the operations of the delta function.  There may be a problem if the machine runs out of memory – Turing machines have unlimited tape to use– but if necessary, one could suppose adding external memory as necessary.  Theoretically, the total amount of external memory available in the world today is limited, but the amount is so large that this is not a practical limitation.

One can prove that for a fairly standard computer running a standard language, anything that can be done on that PC can be done on that PC.  Moreover, if it has a polynomially bounded algorithm on the PC, it also has a polynomial algorithm on the Turing Machine.  The proof here is not easy. It involves:

1. specifying the PC and its entire instruction set

2. showing how to emulate  each of the PC instructions in polynomial time on a Turing machine

A Simple Computer [optional]

The problem here is the amount of detail that one is willing to go through to specify details of an ideal computer and then showing how to emulate each instruction on a Turing machine.  Various authors have done this (Hopcroft, Motwani and Ullman; Lewis and Papadimitriou; Homer and Selman); each has a slightly different approach.

First, the two big differences between a Turing machine and a computer are 

1. sequential access vs. random access: a computer can access any memory cell in one instruction, but a Turing machine must begin at one end of its tape and move position by position along the length of its tape to reach and then access any one memory location. 

2. the instruction set: a computer will have a whole set of machine instructions, but a Turing machine can only read, write, change state, and move left or right.

Let’s suppose a computer with one dedicated register, a program counter (PC).  It could also have k other registers, but these aren’t necessary.  It may be simpler to assume that all instructions work on arbitrary memory; there is no need to load operands into registers.    On a computer, it is generally faster to have operands in registers, but only by a factor of a constant.  And, for theoretical purposes, there is no distinction between an operation that takes 1 nanosecond and one that takes K nanoseconds, even if K is large – algorithms that differ only by a constant factor are essentially indistinguishable.

We will assume for memory that there are an unbounded number of cells, and that each cell can hold an arbitrarily large number.  Again, both of these are unreasonable – computer memories are bounded but very, very large (especially if one considers CDs, tape drives, and other external memory as part of memory), and there is a bound on the largest number that can be stored in one word of memory.  The way around bounded word size is to store large integers and reals in linked lists of memory cells, but we will assume that is not necessary.

Our model of a computer will have:

· Program counter: automatically incremented at each instruction, except for jumps (PC)

· Three registers: used for any sequence of bits, generally used as an address register (AR1, AR2)

· Infinite memory: each memory word is addressed by an integer (1,2,3…) and can hold any sequence of bits

· Program: set of instructions, stored in memory

· Input from some standard device; output to some standard device

Notice that we assume that each register (PC, AR) and each memory cell can hold arbitrarily long sequences of bits.  Despite the limited instruction set and the lack of registers, this makes our model more powerful than the computer that you use.

Instruction set:  We’ll choose an instruction set to be small but not miniscule.  Here, one can get into interesting side excursions.  A “Turing Tarpit” is a computer language designed to be Turing-complete but as small as possible – several different tarpits have been developed.  Each must be able to read a symbol, write a symbol, increment (or decrement), and have some kind of branch.  At least one language has managed to do all this in one instruction – there is a language whose only instruction is “subtract and branch if negative”.  And, there is the language “OISC” (a takeoff on “RISC”, a reduced instruction set language) – the one instruction set computer – whose only instruction also combines the increment/decrement and the branch.  

The instruction set we will use has a subset of some of the standard 3-address instructions.  Addressing can be 




READ
ar


MEM[ar] LOADED FROM INPUT




READ
@ar


MEM[MEM[ar]] :=  INPUT




WRITE


MEMORY[AR] MOVED TO OUTPUT




ADD ar1, ar2, ar3 

MEM[ar3] := MEM[ar1]+MEM[ar2]





HALF   ar1  ar3

MEM[ar3] := MEM[ar1]/2




SHFT   ar1


MEM [ar1] = MEM[ar1] * 2




JMP      C


PC = C




JPOS    ar C


IF MEMORY[ar] > 0, PC =  C

The Turing Machine to emulate this computer will have several tapes



Tape 1:  PC



Tape 2:  address tape, used for fetching operands



Tape 3:  Memory, stored in the form of (address, contents)



Tape 4:  Input tape (holds whatever the standard input device would have had)



Tape 5:  Output tape (TM writes all output to this tape)



Tape 6;  Scratch work tape, if desired

Example:   ADD  23, @45, 96

(1) Write 23 onto tape 2, the address tape

(2) Scan the memory tape until the number 23 is found; replace 23 with contents onto tape2

(3) Write @45 onto tape 2 (after the number written in step 2)

(4) Scan memory tape until 45 is found, copy its contents onto tape 2 (replace the 45)

(5) Find this cell on the memory tape, replace the address by its contents

(6) Add these two numbers, using the scratch tape if desired

(7) Find cell 96 on the memory tape

(8) Replace its contents by the sum from tape 2 (perhaps moving tape over to make room)

The simple computer starts its computation with its program stored in memory (tape 3) and all its input on tape 4.  The combined length of these tapes is some number I.  After t steps of the program, a 3-address instruction set cannot have accessed more than 3t memory locations.  

At each step, the computer uses at most one new memory location.  The number stored in that memory location is at most size (I+t) – no result of addition, doubling, or other operation adds more than one digit to a number in base 2.  Thus, after t steps, the contents of tape 2 have length bounded by Kt2.

This means a one-time-unit random access to memory can be emulated by the Turning machine in Kt2; thus t steps can be emulated in Kt3.
Now, recall that a multitape Turing machine can be emulated by a single tape Turing machine, and that the order is at most squared.  Thus, the simple computer can be emulated by a standard Turing machine in Kt6 – and, importantly, what is polynomial on this simple computer is still polynomial on a standard Turing machine.

[Aside:  note that we did not include a MULT ar1, ar2, ar3 operation – arbitrary multiplication is not allowed.  The problem is that multiplication grows too fast, so that it becomes exponential.  If x =2, the loop (while true x := 2*x) requires 2t space after t steps.]

Encodings of Turing Machines   

For many uses of Turing machines, we want to encode them (and their inputs) into some standard alphabet.  There are several reasons to do this.  First, we are writing different Turing machines for different problems – this isn’t efficient; we don’t build different computers for different problems; rather we write different programs that run on the same computer.  Second, we want a (relatively) short and machine-readable description of a Turing machine – something much more standard and concise that the rather long English descriptions or complicated diagrams we have been writing.

In computer science, this alphabet is most naturally Σ = {0,1}.  To use only two characters, all information must be encoded as strings of 0’s; we will need to use the 1 as a separator character.

One problem is how to encode the alphabet of the Turing machine.  If all alphabets were subsets of some standard alphabet (such as the ASCII or Unicode sets of characters), there would be no problem, since each character in any alphabet could be encoded (in fact, already is encoded in one way as ASCII or in another as Unicode;  in this sense, all “regular” characters have already been coded into the alphabet of {0,1}).  But there is no restriction on the alphabets of formal languages requiring them to use any symbol already in existence anywhere.

There is one restriction on tape alphabets Γ.  Any alphabet must include the character blank B, so one can encode the blank as 0.
One option would simply be to list the characters of the alphabet in some order, and assign them encodings in that order, starting with 00 (since 0 is the encoding of the blank B).

Example:


Σ11 ́= {a, b, c} would be encoded as:  
a = 00
b = 000
c = 0000


Σ2́= {(, (, (}}would be encoded as
( = 00 

( = 000

( = 0000

One problem here is that the two different languages



L1 = anbnc2n


L2 = (n(n(2n

would have exactly the same strings once they were encoded.  However, the two languages, though different, are in some sense the same (they are mathematically isomorphic), so this need not be particularly worrisome.  This is the approach that we will use in this book (but like many other conventions, other authors will make other choices).

A Turing machine is defined by its (i) set of states, (ii) input and tape alphabets, and (iii) delta function.  Each (useful) state appears as the object of a move in the delta function, and each useful input or tape alphabet symbol will appear somewhere also in the arguments or values of the delta function.  Thus, we can retrieve all the information about the TM from its delta function.  We do need to know what qstart , qaccept , qreject  are, but we can standard encode them in a standard way:



qstart = 0


qaccept = 00


qreject = 000

(The alert reader may complain that this assumes that these are three distinct states, and does not allow, for example   qstart =   qaccept.   This is true, but does not eliminate any “interesting” Turing machines.)

Moves of the read/write head can be encoded



Left = 0


Right = 00

Then one move of the Turing machine’s transition function will look like:



1state1symbol1new_state1new_symbol1head_move1

Thus, in a Turing machine with  qstart,  qaccept,  qreject and 4 other states   q1 = 0000, q2 = 00000,  q3  = 000000, q4 = 0000000; a move from  q1 reading ‘c’ to   qaccept writing a blank and moving left would look like:


100001000010010101

The encoding of the entire TM can be done:


11move1 move2 move3 …. movelast 11

Strings are easy to encode.  The string ‘bbaca’ would become, under this scheme:


1100010001001000010011

If one encodes a Turing machine followed by its encoded input string, note that one can find the end of the machine and the beginning of the string at the point where four 1’s appear.  

Thus any TM, with input, can be encoded as a string of 0’s and 1’s.

Does any string of 0’s and 1’s correspond to the encoding of a TM?  Not unless we take the convention that it does.  Note that no string that we get as the encoding of a Turing machine ever has more than four consecutive 1’s (and never has three in a row, either). And, the pattern of pairs on 1’s is constrained at the start and end of moves. And, the restriction that the transitions be a function (never more than one move from a given state, symbol pair) makes more constraints on what can be a legal TM encoding.

It would be possible to take a string of 0’s and 1’s, analyze it, and decide if it corresponded to a legal TM.  However, a simpler option is to say that any string that is not a legal TM corresponds to a TM with no moves at all – and thus, a TM that never accepts any input. If one also takes the convention that an undefined move goes to qreject,then this is a TM that rejects all inputs.

Universal Turing Machine

In designing Turing machines for problems, there is a new ‘machine’ for each new problem.  This isn’t really necessary.  It is fairly easy to design a UTM, or Universal Turing Machine.  The input to the UTM is (i) a Turing machine M, and (ii) M’s input I.  Then, the UTM emulates M on I, and can announce whether M accepts or rejects I, or what else it may do.

The input to the UTM is a string of 0’s and 1’s, the encoding of M and I as outlined in the section above.

One way to build M is as a 3 tape Turing machine

Tape 1: input take, holds M and I (encoded)

Tape 2:  working tape, hold the input to M, in encoded form

Tape 3:   current state

(Other tapes can be added if convenient – for example, an extra working tape might be useful in shifting parts of tape 2 to the right or left.)

The UTM begins its operation by (i) copy the encoding of I, the input to M, onto tape 2, and (ii) copy 0 (for qstart) onto tape 3.

Now, it looks at the 0’s on Tape 2 for the current input symbol.  It must find the place in the encoding of M that matches this symbol and the state (from Tape 3).  If it finds a match, it must change Tape 2 into the proper configuration (shifting contents left or right as it needs to add or delete some number of 0’s).  If there is no match, by convention it writes qreject on its Tape 3 and stops and rejects (entering its own qUTM-reject.  If it finds that it writes qaccept (or qreject ), it goes to its own qUTM-accept  (or qUTM-reject ). 

The advantage of the Universal Turing Machine is that it is a machine with a simple standard alphabet ({0,1}) that can emulate every other Turing Machine.  Its only task is to read a Turing Machine (so the machine that it reads is like a program for the UTM), and the input to that TM or program, and run the TM/program on its input.

Exercises

1. Given the Turing machine below, trace its operation (give the sequence of configurations) on the input string 0011

2. Write out all the moves of a standard one-tape Turing machine to accept the language (over Σ={a.b}

a. Strings that begin with a and end with b

b. Strings with an even number of a’s

c. Strings that have an odd number of characters, and the middle character is b

d. Strings in which the number of b’s is twice the number of a’s

e. Strings where the number of a’s is not prime

3. Repeat (2) but use multitape or nondeterministic Turing machines if convenient

4. Write out the encoding of the Turing machine from Problem 1.

5. Use the web to search for arguments against the Church-Turing Thesis.  Analyze any arguments that you find – do you find them cogent? Why or why not?

6. (Fun)  Visit http://www.cheransoft.com/vturing/    Write and run your own Turing machines.
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